o

is the dimensional velocity of the "quasisolid" core;
is the yield stress;

is the dimensional velocity at the inlet;

is the flow rate;

are the dimensionless coordinates;

are the dimensionless velocity components;

is the plasticity parameter;

is the Reynolds number;

ig the dimensionless velocity of the "quasisolid" core.
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THERMAL INTERACTION BETWEEN GAS LINE
AND FROZEN SOILS ’

B. L. Krivoshein and M. Yunusov UDC 536.244

The article examines the numerical solution of the problem of heat exchange during the flow of
gas through an underground pipeline taking into account the phase transitions in the soil under
various cooling regimes of the gas.

Investigations of the thermal regimes of pipelines running through frozen soil are dealt with in many
works [1-6], These works give most attention to the investigation of the thermal fields of the soil, while the
temperature of the pumped medium is taken as constant,

The present work examines the two-dimensional problem of the change of gas along the pipeline and
in time, taking into account the dynamics of heat exchange with the environment and of phase transitions in
the soil. ‘

The examined problem includes two groups of equations. The first expresses the laws of conserva-
tion for a gas moving in the gas pipe, and with the usually adopted assumptions [7], it can change to the form

’

B gy T BT +Bidl + B M- M= — (), P.= — ok >
w w 4

to

@? - gsin u) exp M. @)

We adopt the following boundary conditions:

Theo=Ti(x), Tl=o=Ta(f); Pli—o= Pi(x),
Plo=Pp(f), 0<Cx<CL, 0Tl

@)

The equations of the second group describe the distribution of the temperature field of the soil around
the pipeline [9, 11}

Mathematical Institute, Computer Center, Academy of Sciences of the Tadzhian SSR, Dushanbe, Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 3, pp, 489-496, September, 1979, Original article
submitted October 16, 1978,

0022-0841/79/3703-1083$07.50 © 1980 Plenum Publishing Corporation 1083



1
H ) = (K8x + - (K8), + — (Kuply @

O<x<L, 0<t<t, n<r<rn ¢ <9,
re<r<n, 0oy, ¢ <e<2n),
Blimo=1olx 1. @)

O<Lx<L, r<r<rn, 0oy,

PO, [ Kr<r ¢ <e<9),
KO:{X:O = ‘Ph Kﬁx 'x=L = %.

B lrrie.ty = 9% 0'31:& = ﬁl%:'#;ig '
K8, rer, = 2 (0], — n),

0 | oy fa—ol) 0<0o<Y., ¥<o<om

on r=r,

K

K’Gr lr:r. =@, Q' <‘P <(P'.

K8:lrt o —0=Krlritome +o o & lro+8 me=0 = ®lry+8pe+0»

where
Kpe n<r<ro+6me

K= KZ! r0+6me<r<R,
Kh R<r<rh

H®) = [1BO+xE— o),
]

Cmgme' rﬂ gf <7’0 + Gmev

B(@®) = cyy, 7o + 8e<< r << R,

Lo0<o<y,
Oy, R<r<r, i={2 (p”\<(p(p<¢2n
¥ <e<9,
q:':arccos(ﬁ—zf’—), ¢ =q.
ryt+r,

It was shgwn [9-11] that the solution of the first equation of system (1) under condition (2) and with & =
wix) = w(x, t), t €[0, t] has the form

B o
By

T(x, 5 =4 Tz( ——?L)exp(§5d§)+g[6’+ Blaﬁ(t_ xig ﬁo)] 4)
"o z,

Using the method of [11}, we present the solution of the second equation of (1) under condition (2) and
with w = W(x) = w(x, t), t€ [0, t] in the form
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TABLE 1. Dynamics of the Changes in Air Temperature and Height
of Snow Cover

MOch!l 2 3 4 5 6 7 8 9%!0111‘12
Ty, °C|—23,6/—22,2/—18,3| —9,4| —1,6| 7,8 | 1,38 | 1,6 | 5,4 | —3,7 —15,3L21,3
hep,m|{ 0,3 | 0,4 | 0,4 [0451 0,2 — | — | — |0,05] 0,1 02 '0,25
P’(x'_(g’t), x >uwt,
Ty (x — wi)
(5)
M=) Pt f )
In - j 19 & —Inw, x< ot
T, "z?;-idz 5
-]
Then the pressure is determined by the expression _
P(x, fy = exp MT (x, ©). : (6)
From the third equation of (1) we find
6.5
w(x, 1) = []zORO exp (— i ] . (7)

Since w is contained in (4)-(6), iteration is necessary to obtain T, M, and P. With zero iteration, we
take the value of w on the previous time-dependent layer. Using the method of {11], we can show that

|75 — T51 |, < const | @ — w®~ 1[{,_ s=0,1,2 ... 8)

For underground gas lines of small diameter, the effect of heat exchange on the soil surface is negligibly
small [1], and we can therefore write

(K)o =0, K-——gﬁ =0, 0<o<2n,
n

and it is expedient to solve the problem (3) inthe region 0 = x =L, ry<r=ry, 0 St = tp,

For pipelines with large diameter placed at small depth, the influence of the soil surface must be taken
into account, and the solution of problem (3) depends substantially on ¢ < [0, 27].

If we assume that the gas line is an infinite thin rod, then instead of (3) we have a plane problem (if { is
not taken into account)

H (@)= (K8x + (K9, 0<<x<<L, ro<<r<<r, 0<<t<{tp
Qo = B9 (x, 1),
K lrtome 0 = K8y ot e 40, 9
Ko, ir, =0 (@, —T), Kb |, =0
Blrtope—0 = Blrots KOy lemo = K@y lse =0,

me—H)s

where ¢ = 0 for pipelines with ry = 0.2 m and ¢ = aa(Ty — &) if the gas line is considered as a rod; T = ’i‘(x, t)
is determined by (4).

Since in problem (9) the coefficients H and K with 4 = #* have a discontinuity, we solve (9) by a method
suggested in [9-14],
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Fig. 1 Fig. 2

Fig. 1. Changes in the temperature of the gas T, °C, and of the soil ¢, °C, along the gas pipe-
line at different instants of time (1, 2: gas, 3-6: soil): 1) t = 18 h; 2) 198; 3) 18; 4) 198; 5) 18;
6) 198 (3, 4: above the pipe, r = 0,75 m; 5, 8; under the pipe, r = 0.75 m), x, km.

Fig. 2. Change in the depth of thawing of the soil below (a) and above (b) the pipe at different
points of the gas pipeline in time: 1) t =18 h; 2) 56; 3) 250; 4) 720, R, m; x, km.
In accordance with it, the solution of (9) amounis to solving a nonlinear system of algebraié equatjons
by the method of run with iteration [8].

The new method was used in a series of calculations on a digital computer with the following initial
data: ey = 0.6 kealkg-deg C; vt = 40 kg/m?; « = 50 kcal/m?-h-deg C; ag = 10 kcal/m?-h-deg C; m = 0,2;
§ = 0.036°C™; 6me = 0.1 m; ® = 49,920 keal/m?;

9 keal/m® .°C 1, <r <<rp+ Sppe

b={512keal/m® -°C 1o+ 8 <r <R,
480kcal/m® -°C R<r<ry

0,003 keal/m-1-°C 1y <1 <rpt Sime,
K=1188kal/m:h -°C 1,4 8melr<<R,
1.16 keal/m.h -°C R<Lr<n,

- ~1
aa=aa(1+ 0y ZS“ ) 3 Agp = 0,3 keal/m-h-°C;
sn

Dlimo=—1°C=Tlmo; 1, =0T re=125m; r,=25m; L =100km

Versions of gas transport were examined with cooling to Ty = = 30°C; Tx = ¢ = T4 + 5°C; to Ty - =—1°C.
The climatic data (Tg, hsn) used in the calculations are presented in Table 1,

Figure 1 shows the results of calculations of the gas and soil temperatures along the gas pipeline at dif-
ferent instants of time. Curves 1 and 2 correspond to the drop in temperature at the instants of time 18 and
198 h, respectively. The gas temperature before the gas pipeline was put into operation was equal to the soil
temperature (T|t o = —1°C). It can be seen from Fig.1 that as time passes, the region where gas has above-
zero temperature increases, Approximately after 200 h, the gas-temperature distribution along the pipeline
is close to steady-state. The time before conditionally steady -state conditions are reached is t = 20 L8y/w.
With non-steady-state heaf exchange, the curve of the gas temperature has a point of discontinuity indicating
the position of the front of the heated gas at the corresponding instant of time {curve 1for t =18h). Behind
this point, the gas temperature differs from the soil temperature (it increases due to the heat exchange with
the warmer soil, #t=9 = 1°C, but T|; = = —1°C). Analogous regularities, but with amplitudinal shift, are
encountered in the soil under the pipeline (r = 0.75 m, curves 5, 6 in Fig, 1).
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Fig, 3. Change in gas temperature along the gas
pipeline in transport of gas cooled by AVO (to T =
T, +5°C) in time: 1-12) January-December, re-

spectively, T, °C.

It can be seen from an analysis of curves 4-6 that in transport of gas with a temperature of 30°C, the
soil under the entire pipeline is in a thawed state, Under the pipe the soil temperature, and consequently the
depth of thawing, is greater than at the same distance vertically above the pipe. This is due to the influx of
cold from the side of the soil surface. In steady state, the gas temperature with increasing distance approaches
the soil temperature (within 1-2°C).

Figure 2 shows the change ih depth of thawing (below and above the pipe) along a pipeline without heat
ingsulation at different instants of time. With increasing distance, the gas temperature drops, and therefore
the depth of thawing decreases. Maximum depth of thawing under the pipe is 2 m; above the pipe it is 0.56 m.

Figure 3 illustrates the change in gas temperature along the gas pipeline with cylindrical heat insulation
0.1 m thick in transport of gas cooled by air coolers (AVO}), i.e., for the case when the gas temperature
changes synchronously with the air temperature: Tx =, = Ty + A, where Ty is the arithmetic mean of the gas
temperature; A is the amplitude of the fluctuations (in the calculations we took A = 5°C), It can be seen from
Fig. 3 that in the course of a year, the gas temperature on the section from 0 to 50-60 km changes within wide
limits (from —18,6 to —3.1°C in January and from 21 to 4.1°C in August).

Over the entire length of the gas pipeline from November to April, the pumped gas has subzero tempera-
ture, and from May to October above-zero temperature, With increasing distance, the amplitude of the fluc-
tuations in the gas temperature decreases because of the lower level of the gas temperature and the heat ex-
change with the air. At the end sections of the gas pipeline (80 = x = 100 km) the gas temperature practically
does not change with time,

On the basis of the elaborated model, the thickness of the heat insulation was obtained along the gas pipe-
line. The optimum thickness of the heat insulation was determined as a result of solving the following problem

3 o, 0T

Qo8 | 4

0..

a X

Fig. 4. Change in thickness of the heat insulation, depth of thaw-
ing, gas and soil temperature with increasing distance, 6, m; o,
kcal/m?-h-degC; R, m; &/, °C; T-107%, °C,
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(9): Throughthe heat insulation, the depth of thawing of the soil R (x, t) had to be limited to the permissible
value, proceeding from the condition of ensuring the stability of the pipeline and protection of the environ-
ment, It can be seen from Fig, 4 that in this case the maximum depth of thawing is 0.56 m. If we change
the thickness of the heat insulation in steps (0pe = 0.1 m for 0 = x = 30 km; Spe = 0,065 m for 30 = x = 40
km, and dpme = 0.05 for 50 = x < 90 km), the depth of thawing of the soil can be limited to 0.56 m at the be-
ginning of the pipeline (x = 0) and to 0.2 m at its end (x = 90 km)., The graph of the gas temperature then has
points of inflection at the places of change in 6p,e(X).

NOTATION
oy, A, c =yrerm + (L—m)cyyp, A, m,
K, @, aa, % zg, Ry, B, A, P, w, vp are the physical parameters of the gas and the soil;
T, ¢, Ta are the gas, soil, and air temperature, respectively;
F, ry are the cross-sectional area and radius of the pipe, respectively;
L is the length of the pipeline;
Tt is the distance between the surface of the pipe and the soil surface;
ry is the radius of thermal effect;

te is the final instant of time;
By = c/yTer; B =—Bya + BB, By =(2wxy/

yreTF)(1/wW); 83 = (Aﬁ/ YTCeT)Px; By = —(A/

y1/cT)Px; M = In(P/T).
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